中科院沈陽自動化所的Wang利用深度強化學習算法和視覺感知相結合的方法來完成移動機器人(如圖3(a))在非結構環境下的移動操作[7]。作者將移動操作過程看做一個標準的強化學習問題,首先通過雙目相機通過DOPE獲取目標物體的6D姿態p以及機器人本體的當前狀態st,接著通過基于PPO的強化學習算法預測機器人的本體,機械臂以及機械手的運動并控制機器人本體運動,最后機器人的運動狀態st+1和響應rt,其中響應主要包含了整個系統的控制響應rctrl、機械手末端的位置響應rdist以及抓取狀態rgrasp(如圖3(b))。最后作者在仿真環境和真實環境下測試了不同高度下的抓取成功率,在仿真中,立方體的抓取效果最好達到了90%的成功率,而球類物體較差僅有60%左右,而在實際測試過程中,在姿態估計正確的前提下可實現目標物體的成功抓取(如圖3(c)(d))。
資料獲取 | |
新聞資訊 | |
== 資訊 == | |
» 人形機器人未來3-5年能夠實現產業化的方 | |
» 導診服務機器人上崗門診大廳 助力醫院智慧 | |
» 山東省青島市政府辦公廳發布《數字青島20 | |
» 關于印發《青海省支持大數據產業發展政策措 | |
» 全屋無主燈智能化規范 | |
» 微波雷達傳感技術室內照明應用規范 | |
» 人工智能研發運營體系(ML0ps)實踐指 | |
» 四驅四轉移動機器人運動模型及應用分析 | |
» 國內細分賽道企業在 AIGC 各應用場景 | |
» 國內科技大廠布局生成式 AI,未來有望借 | |
» AIGC領域相關初創公司及業務場景梳理 | |
» ChatGPT 以 GPT+RLHF 模 | |
» AIGC提升文字 圖片滲透率,視頻 直播 | |
» AI商業化空間前景廣闊應用場景豐富 | |
» AI 內容創作成本大幅降低且耗時更短 優 | |
== 機器人推薦 == | |
服務機器人(迎賓、講解、導診...) |
|
智能消毒機器人 |
|
機器人底盤 |